
Kinetic Model of Cellulose Synthase Activity; Structural Aspects Impacting Cellulose Degree of Polymerization (DP)

240 120 60

240 120 60

Office of Science

Scientific Achievement

>A catalytic model of bacterial synthase processivity, including glucan chain initiation, elongation and termination, with kinetic constants. >Point mutations identify residues impacting DP.

Significance and Impact

This study identifies kinetic and structural aspects that govern cellulose synthase processivity, yielding insights for engineering cellulose properties (DP).

Research Details

Processivity equals rounds of elongation before termination (k_{a}/k_{3}) . Steady state rate is dependent on elongation and initiation. A and B: overview of catalytic cycle. C: UDP-glc saturation curve (data + simulation). D: GPC profiles of cellulose made by isolated enzyme as function of time. E: Simulations of processivity with increasing k_4 . F: Structure of bacterial synthase with glucan in channel. G: GPC profile of cellulose synthesized by synthases with point mutations, resulting in changes in cellulose DP.

