
¹H-¹³C Correlation NMR for Structural Investigation of Primary Cell Walls

Significance and Impact

Until recently, studies of plant cell walls by solidstate NMR mostly relied on ¹³C chemical shifts. By resolving the ¹H chemical shifts of polysaccharides, we add a new molecular probe of cell wall polysaccharides. Knowledge of the ¹H chemical shifts allows us to use ¹H spin diffusion NMR to detect nanometer intermolecular contacts, which is difficult to achieve by ¹³C spin diffusion NMR.

Scientific Results

A 3D NMR method is developed to measure ¹H chemical shifts and intermolecular interactions of plant cell wall polysaccharides.

Research Details

(a) A 3D ¹H-¹³C-¹³C correlation experiment at 37 kHz MAS gives high-resolution spectra of matrix polysaccharides in *Arabidopsis* cell walls. (b) The ¹H and ¹³C chemical shifts combine to resolve all polysaccharides in cell walls. (c) Using these ¹H chemical shifts, and spinning at 50 kHz, we detected cellulose-pectin correlations using only 2 mg of cell wall material and a short mixing time of 1.3 ms. This is much more efficient than ¹³C spin diffusion NMR.

Aassachusetts

UNIVERSITY

Institute of Technology PENNSTATE

produced at Penn State (Gu lab)

